plot.coxph_mpl_dc.Rd
Plot the baseline hazard with the confidence interval estimates
# S3 method for coxph_mpl_dc plot( x, parameter = "theta", funtype = "hazard", xout, se = TRUE, ltys, cols, ... )
x | an object inheriting from class |
---|---|
parameter | the set of parameters of interest. Indicate |
funtype | the type of function for ploting, i.e. |
xout | the time values for the baseline hazard plot |
se | se=TRUE gives both the MPL baseline estimates and 95% confidence interval plots while se=FALSE gives only the MPL baseline estimate plot. |
ltys | a line type vector with two components, the first component is the line type of the baseline hazard while the second component is the line type of the 95% confidence interval |
cols | a colour vector with two components, the first component is the colour of the baseline hazard while the second component is the colour the 95% confidence interval |
... | other arguments |
the baseline hazard plot
When the input is of class coxph_mpl_dc
and parameters=="theta"
, the baseline estimates
base on \(\theta\) and xout (with the corresponding 95% confidence interval if se=TRUE ) are ploted.
When the input is of class coxph_mpl_dc
and parameters=="gamma"
, the baseline hazard estimates
based on \(\gamma\) and xout (with the corresponding 95% confidence interval if se=TRUE ) are ploted.
Brodaty H, Connors M, Xu J, Woodward M, Ames D. (2014). "Predictors of institutionalization in dementia: a three year longitudinal study". Journal of Alzheimers Disease 40, 221-226.
Xu J, Ma J, Connors MH, Brodaty H. (2018). "Proportional hazard model estimation under dependent censoring using copulas and penalized likelihood". Statistics in Medicine 37, 2238–2251.
Jing Xu, Jun Ma, Thomas Fung
# \donttest{ ##-- Copula types copula3 <- 'frank' ##-- A real example ##-- One dataset from Prospective Research in Memory Clinics (PRIME) study ##-- Refer to article Brodaty et al (2014), ## the predictors of institutionalization of dementia patients over 3-year study period data(PRIME) surv<-as.matrix(PRIME[,1:3]) #time, event and dependent censoring indicators cova<-as.matrix(PRIME[, -c(1:3)]) #covariates colMeans(surv[,2:3]) #the proportions of event and dependent censoring#> Event Depcen #> 0.2675815 0.2504288#> [1] 583#> [1] 15#> [1] "Time" "Event" "Depcen" "Age" #> [5] "Gender" "HighEdu" "Alzheimer" "CDR_base" #> [9] "MMSE_base" "SMAF_base" "ZBI_base" "NPI_base" #> [13] "Benzon" "Antiphsy" "LivingAlone" "MMSE_change_3m" #> [17] "SMAF_change_3m" "NPI_change_3m"##--MPL estimate Cox proportional hazard model for institutionalization under medium positive ##--dependent censoring control <- coxph_mpl_dc.control(ordSp = 4, binCount = 200, tie = 'Yes', tau = 0.5, copula = copula3, pent = 'penalty_mspl', smpart = 'REML', penc = 'penalty_mspl', smparc = 'REML', cat.smpar = 'No' ) coxMPLests_tau <- coxph_mpl_dc(surv=surv, cova=cova, control=control, ) plot(x = coxMPLests_tau, parameter = "theta", funtype="hazard", xout = seq(0, 36, 0.01), se = TRUE, cols=c("blue", "red"), ltys=c(1, 2), type="l", lwd=1, cex=1, cex.axis=1, cex.lab=1, xlab="Time (Month)", ylab="Hazard", xlim=c(0, 36), ylim=c(0, 0.05) )legend( 'topleft',legend = c( expression(tau==0.5), "95% Confidence Interval"), col = c("blue", "red"), lty = c(1, 2), cex = 1)plot(x = coxMPLests_tau, parameter = "theta", funtype="cumhazard", xout = seq(0, 36, 0.01), se = TRUE, cols=c("blue", "red"), ltys=c(1, 2), type="l", lwd=1, cex=1, cex.axis=1, cex.lab=1, xlab="Time (Month)", ylab="Hazard", xlim=c(0, 36), ylim=c(0, 1.2) )legend( 'topleft', legend = c( expression(tau==0.5), "95% Confidence Interval"), col = c("blue", "red"), lty = c(1, 2), cex = 1 )plot(x = coxMPLests_tau, parameter = "theta", funtype="survival", xout = seq(0, 36, 0.01), se = TRUE, cols=c("blue", "red"), ltys=c(1, 2), type="l", lwd=1, cex=1, cex.axis=1, cex.lab=1, xlab="Time (Month)", ylab="Hazard", xlim=c(0, 36), ylim=c(0, 1) )legend( 'bottomleft', legend = c( expression(tau==0.5), "95% Confidence Interval"), col = c("blue", "red"), lty = c(1, 2), cex = 1 )# }