coef.coxph_mpl_dc.Rd
Extract the matrix of regression coefficients with their corresponding standard errors,
\(z\)-statistics and \(p\)-values of the model part of interest of a coxph_mpl_dc
object
# S3 method for coxph_mpl_dc coef(object, parameter, ...)
object | an object inheriting from class |
---|---|
parameter | the set of parameters of interest. Indicate |
... | other arguments |
a matrix of coefficients with standard errors, z-statistics and corresponding p-values
When the input is of class coxph_mpl_dc
and parameters=="beta"
,
the matrix of beta estimates with corresponding standar errors, \(z\)-statistics and \(p\)-values are reported. When the input is of class coxph_mpl_dc
and parameters=="phi"
,
the matrix of phi estimates with corresponding standar errors, \(z\)-statistics and \(p\)-values are reported.
Brodaty H, Connors M, Xu J, Woodward M, Ames D. (2014). "Predictors of institutionalization in dementia: a three year longitudinal study". Journal of Alzheimers Disease 40, 221-226.
Xu J, Ma J, Connors MH, Brodaty H. (2018). "Proportional hazard model estimation under dependent censoring using copulas and penalized likelihood". Statistics in Medicine 37, 2238–2251.
Jing Xu, Jun Ma, Thomas Fung
# \donttest{ ##-- Copula types copula3 <- 'frank' ##-- A real example ##-- One dataset from Prospective Research in Memory Clinics (PRIME) study ##-- Refer to article Brodaty et al (2014), ## the predictors of institutionalization of dementia patients over 3-year study period data(PRIME) surv<-as.matrix(PRIME[,1:3]) #time, event and dependent censoring indicators cova<-as.matrix(PRIME[, -c(1:3)]) #covariates colMeans(surv[,2:3]) #the proportions of event and dependent censoring#> Event Depcen #> 0.2675815 0.2504288#> [1] 583#> [1] 15#> [1] "Time" "Event" "Depcen" "Age" #> [5] "Gender" "HighEdu" "Alzheimer" "CDR_base" #> [9] "MMSE_base" "SMAF_base" "ZBI_base" "NPI_base" #> [13] "Benzon" "Antiphsy" "LivingAlone" "MMSE_change_3m" #> [17] "SMAF_change_3m" "NPI_change_3m"##--MPL estimate Cox proportional hazard model for institutionalization under independent censoring control <- coxph_mpl_dc.control(ordSp = 4, binCount = 200, tie = 'Yes', tau = 0.5, copula = copula3, pent = 'penalty_mspl', smpart = 'REML', penc = 'penalty_mspl', smparc = 'REML', cat.smpar = 'No' ) coxMPLests_tau <- coxph_mpl_dc(surv=surv, cova=cova, control=control, ) MPL_beta<-coef(object = coxMPLests_tau, parameter = "beta",) MPL_phi<-coef(object = coxMPLests_tau, parameter = "phi",) # }