Extract the matrix of regression coefficients with their corresponding standard errors, \(z\)-statistics and \(p\)-values of the model part of interest of a coxph_mpl_dc object

# S3 method for coxph_mpl_dc
coef(object, parameter, ...)

Arguments

object

an object inheriting from class coxph_mpl_dc

parameter

the set of parameters of interest. Indicate parameters="beta" for the regression parameter of beta and parameters="phi" for the regression parameter of phi

...

other arguments

Value

est

a matrix of coefficients with standard errors, z-statistics and corresponding p-values

Details

When the input is of class coxph_mpl_dc and parameters=="beta", the matrix of beta estimates with corresponding standar errors, \(z\)-statistics and \(p\)-values are reported. When the input is of class coxph_mpl_dc and parameters=="phi", the matrix of phi estimates with corresponding standar errors, \(z\)-statistics and \(p\)-values are reported.

References

Brodaty H, Connors M, Xu J, Woodward M, Ames D. (2014). "Predictors of institutionalization in dementia: a three year longitudinal study". Journal of Alzheimers Disease 40, 221-226.

Xu J, Ma J, Connors MH, Brodaty H. (2018). "Proportional hazard model estimation under dependent censoring using copulas and penalized likelihood". Statistics in Medicine 37, 2238–2251.

See also

Author

Jing Xu, Jun Ma, Thomas Fung

Examples

# \donttest{ ##-- Copula types copula3 <- 'frank' ##-- A real example ##-- One dataset from Prospective Research in Memory Clinics (PRIME) study ##-- Refer to article Brodaty et al (2014), ## the predictors of institutionalization of dementia patients over 3-year study period data(PRIME) surv<-as.matrix(PRIME[,1:3]) #time, event and dependent censoring indicators cova<-as.matrix(PRIME[, -c(1:3)]) #covariates colMeans(surv[,2:3]) #the proportions of event and dependent censoring
#> Event Depcen #> 0.2675815 0.2504288
n<-dim(PRIME)[1];print(n)
#> [1] 583
p<-dim(PRIME)[2]-3;print(p)
#> [1] 15
names(PRIME)
#> [1] "Time" "Event" "Depcen" "Age" #> [5] "Gender" "HighEdu" "Alzheimer" "CDR_base" #> [9] "MMSE_base" "SMAF_base" "ZBI_base" "NPI_base" #> [13] "Benzon" "Antiphsy" "LivingAlone" "MMSE_change_3m" #> [17] "SMAF_change_3m" "NPI_change_3m"
##--MPL estimate Cox proportional hazard model for institutionalization under independent censoring control <- coxph_mpl_dc.control(ordSp = 4, binCount = 200, tie = 'Yes', tau = 0.5, copula = copula3, pent = 'penalty_mspl', smpart = 'REML', penc = 'penalty_mspl', smparc = 'REML', cat.smpar = 'No' ) coxMPLests_tau <- coxph_mpl_dc(surv=surv, cova=cova, control=control, ) MPL_beta<-coef(object = coxMPLests_tau, parameter = "beta",) MPL_phi<-coef(object = coxMPLests_tau, parameter = "phi",) # }