surv_data_dc.Rd
Generate a sample of time to event dataset with, dependent right censoring based on one of the Archimedean copulas the given Kendall's tau, sample size n and covariates matrix Z.
surv_data_dc(n, a, Z, lambda, betas, phis, cons7, cons9, tau, copula, distr.ev, distr.ce)
n | the sample size, or the number of the subjects in a sample. |
---|---|
a | the shape parameter of baseline hazard for the event time T. |
Z | the covariate matrix with dimension of n by p, where p is the number of covariates. |
lambda | the scale parameter of baseline hazard for event time T. |
betas | the regression coefficient vector of proportional hazard model for the event time T with dimenion of p by 1. |
phis | the regression coefficient vector of proportional hazard model for dependent censoring time C with dimenion of p by 1. |
cons7 | the parameter of baseline hazard for the dependent censoring time C if assuming an exponential distribution. |
cons9 | the upper limit parameter of uniform distribution for the independent censoring time A, i.e. A~U(0, cons9). |
tau | the Kendall's correlation coefficient between T and C. |
copula | the Archemedean copula that captures the dependence between T and C, a characteristc value, i.e. 'independent', 'clayton', 'gumbel' or 'frank'. |
distr.ev | the distribution of the event time, a characteristc value, i.e. 'weibull' or 'log logit'. |
distr.ce | the distribution of the dependent censoring time, a characteristc value, i.e. 'exponential' or 'weibull'. |
A sample of time to event dataset under dependent right censoring, which includes observed time X, event indicator δ and dependent censoring indicator η.
surv_data_dc allows to generate a survival dataset under dependent right censoring, at sample size n
, based on one of the Archimedean copula
,
Kendall's tau
, and covariates matrix Z
with dimension of n by p. For example, at p=2
, we have Z=cbind(Z1, Z2)
,
where Z1
is treatment generated by distribution of bernoulli(0.5), i.e. 1 represents treatment group and 0 represents control group; Z2
is the age
generated by distribution of U(-10, 10).
The generated dataset includes three varaibles, which are Xi, δi and ηi, i.e. Xi=min(Ti,Ci,Ai), δi=I(Xi=Ti) and ηi=I(Xi=Ci), for i=1,…,n. 'T' represents the event time, whose hazard function is hT(x)=h0T(x)exp(Z⊤β), where the baseline hazard can take weibull form, i.e. h0T(x)=axa−1/λa, or log logistic form, i.e. h0T(x)=1aexp(λ)(xexp(λ))1/a−11+(xexp(λ))1/a. 'C' represents the dependent censoring time, whose hazard function is hC(x)=h0C(x)exp(Z⊤ϕ), where the baseline hazard can take exponential form, i.e. h0C(x)=cons7, or weibull form, i.e. h0C(x)=axa−1/λa.'A' represents the administrative or independent censoring time, where A~U(0, cons9).
Xu J, Ma J, Connors MH, Brodaty H. (2018). "Proportional hazard model estimation under dependent censoring using copulas and penalized likelihood". Statistics in Medicine 37, 2238–2251.
Jing Xu, Jun Ma, Thomas Fung
##-- Copula types copula3 <- 'frank' ##-- Marginal distribution for T, C, and A a <- 2 lambda <- 2 cons7 <- 0.2 cons9 <- 10 tau <- 0.8 betas <- c(-0.5, 0.1) phis <- c(0.3, 0.2) distr.ev <- 'weibull' distr.ce <- 'exponential' ##-- Sample size n <- 200 ##-- One sample Monte Carlo dataset cova <- cbind(rbinom(n, 1, 0.5), runif(n, min=-10, max=10)) surv <- surv_data_dc(n, a, cova, lambda, betas, phis, cons7, cons9, tau, copula3, distr.ev, distr.ce) n <- nrow(cova) p <- ncol(cova) ##-- event and dependent censoring proportions colSums(surv)[c(2,3)]/n#> del eta #> 0.480 0.325X <- surv[,1] # Observed time del<-surv[,2] # failure status eta<-surv[,3] # dependent censoring status